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Abstract 

The present chapter briefly summarises a progress in DES modelling reached in 
the course of DESider. Introduction outlines a motivation for development of the 
hybrid RANS-LES methods, in general, and a place of DES and DES-like models 
within this rather wide group of turbulence resolving approaches, particularly. 
Then, in Section 4.2, the original DES formulation is presented together with a 
general approach to building DES versions based on different background RANS 
models and a list of such versions used or developed in DESider. Finally, Sections 
4.3, 4.4 describe two more general modifications not related to any specific 
background model and touching upon the basics of DES. They are Delayed DES 
(DDES) and Improved DDES (IDDES), which permit to eliminate major flaws of 
the “standard” DES found in the course of its intensive use both within and 
outside DESider and, also, to widen an area of DES and DES-like models 
applicability. 

4.1 Introduction 

It is currently commonly accepted that a wide range of wall-bounded flows with 
massive separation being of primary importance for aeronautic industry cannot be 
quantitatively predicted in a reliable way by classical RANS models of any level 
of complexity, including non-linear eddy viscosity models and DRSM. On the 
other hand, approaches based on “first principles”, i.e., DNS and LES, which are 
now considered as quite capable of facing this challenge, are still computationally 
non-affordable at practical Reynolds numbers and will probably remain such 
during a major part of this century, even based on a very optimistic prognosis 
regarding computer power increase. This situation stimulated intensive work on 
development of hybrid, RANS-LES, approaches whose appearance at the end of 
the 20th century can be considered to a certain extent as a “turning-point” in a view 
on turbulence modelling and simulation strategies. These approaches plausibly 
combine the advantages of RANS and LES and can therefore serve as a valuable 
addition to pure RANS in the arsenal of industrial computational tools until LES 
and DNS become manageable.  

DES proposed in Spalart et al., 1997 is historically the first approach of such a 
type. Its general idea is to combine the fine-tuned RANS technology in the 
attached boundary layers with the “raw power” of LES in the separated flow 
regions populated with relatively large and more geometry-specific “detached” 
eddies whose representation is beyond the capabilities of the traditional RANS 
models. Implementation of this idea is gratifyingly simple. It is based on using the 
same background RANS model with different length scales (RANS and sub-grid 
ones respectively) depending on the local grid-resolution. Exactly this simplicity 
and also impressive results obtained in the first uses of DES for the complex 
aerodynamic applications by its authors (see, for example, Shur et al., 1999, 



Travin et al., 2000, Strelets, 2001) and positive experience accumulated in the 
course of FLOMANIA project (Haase et al., 2006) have motivated further 
development and assessment of this approach in DESider. 

In Sections 4.3 and 4.4 below we present a major outcome of this effort, 
namely, newly proposed modifications of DES (Delayed DES or DDES and 
Improved DDES or IDDES). The first one eliminates the odd reaction of the 
original DES (hereafter DES97) to a grid-refinement beyond some limit (“Model-
Stresses Depletion” (MSD) or “Grid-Induced Separation” (GIS)), whereas the 
second extends the DES-like formalism to Wall Modelling LES (WMLES) and, 
therefore, significantly broadens DES ranges of applicability. However before 
this, in Section 4.2, we concisely outline the DES97 formulation and a general 
methodology used for building its versions based on other than Spalart-Allmaras 
background turbulence models. 

4.2 DES97 formulation and general principles of building DES models 
based on different RANS models 

DES97 combines the S-A RANS model with its Sub-Grid Scale (SGS) 
“counterpart” by means of the “DES limiter” defined by 

},,min{  DESwDES Cdl       (4.1) 

where DESl  is the model length scale, wd  is the distance to the wall involved in 

the destructive term of the S-A model, DESC  is the only additional empirical 

model constant, and   is defined as the largest local grid-spacing: 

},,max{ zyx  .      (4.2) 

Substituting of the length scale (4.1) in place of the distance to the wall in the 
eddy-viscosity transport equation of the S-A RANS model directly results in the 
DES97 model, which performs as the background RANS model in the attached 
boundary layer (at  DESw Cd ) and as an SGS model with “implicit filter” 

DESC  in the separation flow region away from the walls (  DESw Cd ). 

A more general definition of the DES limiter (4.1) compatible with any RANS 
model given by Travin et al., 2002 reads as 

},,min{ LESRANSDES lll        (4.3) 

where RANSl  is the RANS length scale explicitly or implicitly involved in any 

RANS model (e.g., for the k- model this length scale is defined as 

)/(2/1  CklRANS , and for the k- model  /2/3klRANS ) and  DESLES Cl  is 

the LES length scale. 
Note that in accordance with the definition (4.1), location of the RANS-LES 

interface depends only upon the grid used in the simulation, whereas with the 
definition (4.3) it may become also solution-dependent. Other than that, the latter 
definition provides some “freedom of choice” regarding specific terms of RANS 



model equations in which the RANS length scale should be replaced by the DES 
one. The only “guideline” for this suggested in Travin et al., 2002 is that at the 
equilibrium (“generation is equal to dissipation”), resulting SGS model should 
reduce to the Smagorinsky model. This question was thoroughly studied by TUB 
in the course of DESider and is discussed in detail in Yan et al., 2005. Leaving 
aside these “subtleties”, (4.3) suggests a straightforward procedure for building a 
DES model based on arbitrary RANS model. This resulted in a wide set of DES 
versions based on RANS models ranging from one- and two-equations linear eddy 
viscosity models (e.g., S-A and Menter SST k- models) to algebraic Reynolds 
stress models (e.g., CEASM of Lübcke et al., 2002). A list of such models 
used/developed in DESider is presented in Table 1. Their formulations can be 
found in the FLOMANIA final report (Haase et al., 2006) and / or in the original 
publications. 

The DES models with the low Reynolds number correction appeared in the 
Table include a modified expression for the LES length scale needed to 
compensate activation of the low-Reynolds number terms of a background RANS 
models in the LES mode. It reads as: 

 DESLES Cl ,       (4.4) 

where the function   depends on the ratio of the eddy and molecular viscosities 
and deviates from the value of 1.0 only at low sub-grid viscosities (see Shur et al., 
2003, Spalart et al., 2006, Mockett et al., 2007). For RANS models not containing 
any low-Reynolds number terms (e.g., the Menter SST model),   is equal to 1. 

As of today, no strong evidences of noticeable DES model-sensitivity for the 
wall-bounded flows are known (this is supported also by new results presented in 
Chapter IV of this book). This is naturally considered as an essential advantage of 
DES. Nonetheless, its versions based on different RANS models, including RSM 
ones, are still of interest, at least for two reasons. The first one is that some of 
these versions may surpass the S-A or even M-SST-based DES in the flows with 
non-fixed turbulent separation which prediction is a responsibility of the RANS-
branch of DES. The second not less important motivation for development of such 
DES-versions is caused by “personal affections” of different research groups and 
aeronautical industries to this or that RANS turbulence model. Whether objective 
or not, this makes it logical to have a DES version based exactly on those models 
which are used in the RANS context. A straight example of this practice is the 
DES-version developed in the course of DESider by Dassault Aviation and based 
on two-layer SST k- RANS model: this model is routinely used by the company 
as a reference RANS model providing for a fairly good accuracy in most of typical 
applications it deals with. 

 
 
 
 
 



Table 1 DES versions based on different RANS models used/developed in DESider 

4.3 DDES 

4.3.1 Motivation and objective 

DES97 is well understood in thin boundary layers with flattened grid cells, where 
it functions in the RANS mode, and in regions of massive separation with grid 
cells close to isotropic, where it performs in LES mode. However DES can exhibit 
an incorrect behaviour in thick boundary layers and shallow separation regions. 
This behaviour begins when the grid spacing parallel to the wall, || , becomes 

less than the boundary-layer thickness. The grid spacing is then fine enough for 
the DES length-scale to follow the LES branch in accordance with (4.1) and, 
therefore, lower the eddy viscosity below the RANS level. However resolved 

Acronym Background RANS model References 
S-A DES (DES97) S-A model, 

Spalart and Allmaras, 1994 
Spalart et al., 1997 

SAE-DES  S-A model with Edwards and 
Chandra, 1996, modification 

- 

SALSA DES Strain-Adaptive Linear S-A 
model, Rung et al., 2003 

Bunge et al., 2007 

S-A DES with low-Re 
correction 

S-A model Shur et al., 2003, 
Spalart et al.. 2006 

SAE and SALSA DES 
with low-Re correction 

SAE and SALSA models Mockett et al., 2007 

M-SST DES k- Shear Stress Transport model, 
Menter (1993) 

Travin et al., 2002 

WCX k-DES k-model, Wilcox, 1988 Yan et al., 2005 
LLR k–ω DES  Linear Local Realisable k–ω 

model, Rung and Thiele, 1996 
Bunge et al., 2007 

X-LES TNT k-ω model, Kok, 2000 Kok et al., 2004 
k-DES Modified Chen-Patel k-equation 

model, Chen and Patel, 1988 
Peng, 2006 

k-DES Two-Layer SST k-   
Chalot et al., 1994 

 

- 

CEASM DES Compact Explicit Algebraic Stress 
model, Lübcke et al., 2002 

Bunge et al., 2007 

 
OES DES 

k-model, Wilcox, 1988 Braza et al., 2006 
Elakoury et al., 
2007 

Zonal S-A DES S-A model Deck, 2005 
DDES Any background model Spalart et al., 2006 
S-A and M-SST 
IDDES 

S-A and Menter SST models Travin et al., 2006 

SAE and CEASM 
IDDES 

SAE and CEASM models Mockett et al., 2007 



Reynolds stresses deriving from velocity fluctuations (“LES content”) have not 
yet replaced the modelled Reynolds stresses with this grid. The depleted stresses 
reduce the skin friction, which can even lead to premature or Grid Induced 
Separation (GIS). 
To elucidate this issue, Fig. 1 displays three types of grid in a boundary layer. 
Recall that DES97 is designed to treat the entire boundary layer using a RANS 
model and to apply LES only to separated regions.  

In the Type I grid, typical of RANS and of DES with a thin boundary layer, the 
wall-parallel spacings, || , set   via (4.2) and exceed δ, so that the DES length-

scale is on the “RANS branch” ( wDES dl  ) throughout the boundary layer. The 

model functions as intended, since DES was created precisely to by-pass LES in 
large areas of thin boundary layer. 

The other extreme is the Type III, LES grid, with all spacings much smaller 
than δ. The model functions as an SGS model (i.e.,  DESDES Cl ) over the bulk 

of the boundary layer, and as a RANS-like model wDES dl   very near the wall, 

with a “grey” layer in-between. This regime presents using the DES formalism for 
WMLES and is considered in Section 4.4 below. 

 

Figure 1  Grids in a boundary layer. Top – Type 1, natural DES; left - Type II, ambiguous 
spacing; right - Type III, LES grid. Dashed lines – mean velocity profile.  is the boundary 

layer thickness. Assume xz hh ~  

The “ambiguous” grid of the Type II unfortunately activates the LES mode of 
DES (  DESDES Cl ) deep inside the boundary layer, but is patently not fine 

enough to support resolved velocity fluctuations, i.e., LES content. This results in 
a reduction of the eddy viscosity, and therefore the modelled Reynolds stresses, 
without any sizeable resolved stresses to restore the balance. The effect is referred 
to as Modelled Stress Depletion (MSD). It may occur either when the grid is 
gradually refined starting from the Type I, typically when a user is justifiably 
seeking grid convergence, or when geometry features demand a fine wall-parallel 

||>δ

||<δ ||<<δ



grid, or when a boundary layer thickens and nears separation. For instance, over 
an airfoil, the same grid may be of the Type I near its leading edge and of the 
Type II close to the trailing edge. 

The MSD was predicted by Spalart et al., 1997 from the origin of DES97, 
though anticipated only with “excessive” grid refinement and therefore not 
perceived as a major issue. However, later on it was encountered in studies of 
Caruelle, 2000 and Deck, 2002, and strongly emphasized by Menter and Kuntz, 
2004 who showed how severe cases of MSD lead to GIS, although with 2D 
examples which were somewhat artificial. Further studies have shown that 3D 
grids quite affordable today can lower ||  sufficiently to result in MSD, which 

motivated a search of the ways to eliminate it. 

4.3.2 DDES formulation 

The first proposal on eliminating MSD was that of Menter and Kuntz, 2004, who 
suggested using the F1 or F2 functions of the SST k- model of Menter, 1993 to 
identify the boundary layer and prevent a premature switch of DES to LES mode 
within it. Then a more general approach, Delayed DES or DDES, was developed 
(Spalart et al., 2006), which is a derivative of the Menter and Kuntz proposal 
applicable to any RANS model. Its formulation is presented below. 

The argument of the blending functions F1 and F2 of the SST k- model, 

)/( wdk  , is the ratio between the internal length scale /k  of the k-ω 

turbulence model and the distance to the wall. Both functions equal 1 in the 
boundary layer, and fall to zero rapidly at its edge. One-equation models, such as 
the S-A one, do not have an internal length-scale, but involve the parameter r, 
which is also the ratio (squared) of a model length-scale to the wall distance. 
Exactly this, slightly modified, parameter is used for building DDES approach: 

22
,, wjiji
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d
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r




 ,      (4.5) 

where   is the molecular kinematic viscosity, t  is the eddy viscosity, jiU ,  are 

the velocity gradients, and κ is the von Kármán constant. Similar to r in the S-A 
model, this parameter equals 1 in a logarithmic layer, and falls to 0 gradually 
towards the edge of the boundary layer. The addition of   in the numerator of 
(4.5) corrects the very near-wall behavior by ensuring that dr  remains away from 

0. The subscript “d” represents “delayed.”  
The quantity dr  is used in the function: 

])8tanh[(1 3
dd rf  ,      (4.6) 

which is designed to be 1 in the LES region, where 1dr , and 0 elsewhere (and 

to be insensitive to dr  exceeding 1 very near the wall). It is similar to F2, and 

rather steep near dr = 0.1. The values 8 and 3 for the constants in (4.6) are based 



on intuitive shape requirements for df , and on tests of DDES in the flat-plate 

boundary layer (see Spalart et al., 2006). These values ensure that the solution is 
essentially identical to the RANS solution, even if   is much less than δ (it is 
conceivable that models very different from S-A would make dr  approach 0 at 

dw=δ differently enough to require a modest adjustment of df ). The application of 

the above procedures to S-A DES proceeds by re-defining the DES length scale 

DESl  (4.1): 

).,0max(  DESwdwDES Cdfdl     (4.7) 

Although very simple in terms of coding, this new definition does not represent a 
minor adjustment within DES97 in terms of physics. Indeed, without it, DESl  (4.3) 

depends only on the grid, whereas the modified length-scale also depends on the 
eddy-viscosity field, which is time-dependent. The crucial effect is that RANS 
function is self-perpetuating, i.e., the model using (4.7) for DESl  can “refuse” LES 

mode if the function df  indicates that the point is well inside a boundary layer, as 

judged from the value of dr . However, if massive separation occurs, df  does rise 

from 0, and LES mode takes over. In fact, the switch from RANS to LES takes 
place more abruptly following separation than in the DES97, which is desirable, 
since the grey area between RANS and LES becomes narrower. Although this 
does not in itself create LES content, it accelerates its growth following natural 
instabilities, closer to the region where modelled Reynolds stresses are still at full 
strength. 

This behaviour is confirmed by the numerical examples presented in Chapter 
IV (for more recent examples, see, e.g. Trapier et al., 2008). 

4.4 IDDES 

4.4.1 Motivation and objective 

As already mentioned, both the DES97 and DDES approaches are aimed at 
computing of massively separated turbulent flows. However, an attempt to apply 
DES formalism for WMLES in the developed channel flow undertaken by Nikitin 
et al., 2000 turned out generally successful in the sense that the approach enabled 
LES predictions at unlimited values of grid-spacing parallel to the wall (in wall 
units) with no impractical, “channel-friendly”, steps. On the other hand, the 
simulations produced two logarithmic layers: the “inner” log-layer, which arises 
because the RANS model is constructed to provide it and the “outer” log-layer, 
which arises since LES is functioning well once all local grid-sizes are much 
smaller than the distance to the wall. Unfortunately, these two log-layers turn out 
to be mismatched (have different intercept) resulting in lowering the skin-friction 
by up to 15%-20%, missing up-to-date demands for simple flows. Considering the 
crucial importance of WMLES which provides huge savings of computer 
resources compared to the full LES of the wall bounded flows and, thus, paves the 



way to its industrial applications, creating a model which would plausibly 
combine DDES capabilities for natural DES uses with WMLES ones is very 
tempting and gives a strong motivation for development of a model which would 
not only provide a remedy of the LLM but present a single set of formulas for both 
natural DES applications and their WMLES uses, so that different flows or 
different regions inside a single simulation over a complex geometry could be 
automatically treated by an optimal model. An approach, which matches these 
objectives developed in the course of DESider was called Improved DDES or 
IDDES (Travin et al., 2006). IDDES includes two branches, DDES and WMLES, 
and a set of empirical functions designed to obtain both correct performance from 
these branches themselves and their coupling providing a favourable response of 
the combined model as DDES or WMLES depending on the inflow (or initial) 
conditions used in the simulation. A separate and essential element of the 
proposed model is a new definition of the subgrid length-scale that includes 
explicit wall-distance dependence, unlike the usual LES and DES practice, which 
involves only the grid-spacings. Below we outline all the elements of IDDES 
starting from this new subgrid length-scale, which enters both of its branches. 

4.4.2 IDDES formulation 

Sub-grid length-scale 
The issue of the optimal relation between the subgrid length-scale and grid-
spacings is a general issue of any LES approach not involving an explicit filtering. 
It is far from trivial, especially when the computational grid is significantly 
anisotropic, which is typical of the wall-bounded flows. Historically, the most 
widely employed definition has been the cube root of the cell volume. While this 
is a plausibly balanced quantity, it was challenged in DES97, where the maximum 
of the three cell dimensions was advocated instead (see (4.2)). However neither 
definition is successful, if judged by a straightforward application to well-resolved 
LES of wall-bounded flows: the values of the SGS constants, which work well in 
free turbulent flows with cubic cells, are then too large. For instance, the optimal 
value of the Smagorinsky constant for LES of channel flow is about 0.1 if the cube 
root is used, or roughly half its optimal value of 0.2 for Decaying Isotropic 
Homogeneous Turbulence (DIHT). Using the maximum grid spacing, as in 
(D)DES, the difference between the optimal model constants for channel flow and 
DIHT is even larger. This situation cannot be considered as a satisfactory one, not 
only because the two types of flows demand different constants but, more 
importantly, because any “wall-bounded” flow becomes a “free” one away from 
the walls, which means that the use of any single value of the constant calibrated 
on this or that type of flow cannot be correct in a whole flow. This motivates a 
search for an alternative and more physically justified definition of the subgrid 
length-scale, which would not demand different SGS model constants for wall-
bounded and free turbulent flows. 

Since wall-proximity effects, primarily inviscid blocking, are involved, the 
new definition of the sub-grid length scale proposed in Travin et al., 2006 relies 



not only on the cell sizes, but also explicitly includes a wall-distance dependency, 
i.e., has the form: 

),,,( wzyx df  ,      (4.8) 

where   is the needed sub-grid length-scale, x , y , and z  are the local 

streamwise, wall-normal, and lateral cell sizes respectively, and wd  is the 

distance to the wall. 
Let free  be the infinite- wd  limit of the function ),,,( wzyx df  . Then, 

following the concept in the DES (4.2), it is set equal to the maximum local grid 
spacing (away from the walls, the grid for an LES should be fairly isotropic 
anyway, and so the impact of this specific choice is not crucial) 

},,max{max zyxfree  .     (4.9) 

As for the behaviour of   in very close vicinity of the wall, it should not follow 
the drastic decrease of the wall-normal step typical of this region (especially at 
high Reynolds number) and, therefore, should depend on the wall-parallel steps 
only: 

),()( zxwwall fdconst  .     (4.10) 

Assuming, finally, that between these two limiting cases   is a linear function of 

wd  and that at any distance to the wall it varies within the range 

maxmin  , a definition of the sub-grid length-scale satisfying all the above 

demands is formulated as follows: 

}],,,min{max[ maxmax  wnwww CdC ,   (4.11) 

where wn  is the grid step in the wall-normal direction and wC  is an empirical 

constant set equal to 0.15 based on a well-resolved LES of the developed channel 
flow (see Travin et al., 2006, Shur et al., 2008). 

Figure 2 shows two possible types of variation of the sub-grid length-scale   
defined by (4.11), normalized by the maximum grid step, across a plane channel 
with half-width H . The first type (solid line in Fig.2) takes place if wwwn dC  

and, therefore, in accordance with (4.11), as long as maxwd , the length scale 

  remains constant equal to maxwC . Then, once maxwd , it grows linearly 

( wwdC ) until reaching the value of max , and stays constant after that. The 

second type of   variation (dashed line in Fig.2) corresponds to a strong 
wall-normal step stretching. In this case,   remains constant equal to maxwC  as 

long as max wwn Ch . Then, it grows with a rate higher than wC  until reaching 

the value of max  and after that, just as in the first case, remains constant. Note 

that this scenario is undesirable, but with any rate of wall-normal step stretching 
that is acceptable for an accurate LES, it still is not a disaster. For instance, for a 



wall-normal step varying in accordance with a geometric series, it takes place only 
if the series index )1( wCk  , i.e., if k >1.15, which is very close to the 

maximum k values 1.21.3 that still provide sufficient accuracy in LES. 
Therefore, with any acceptable rate of growth of the wall-normal step, the 
difference between the two branches of (4.11) is not large. 

 
Figure 2  Two possible types of variation of the sub-grid length-scale (4.11) across the 

plane channel 

An example demonstrating a convincing performance of the sub-grid length-scale 
(4.11) in the framework of pure LES is presented in Travin et al., 2006 and in 
Section 14 of Chapter V. 

WMLES branch 
This branch is intended to be active only when the inflow conditions used in the 
simulation are unsteady and impose some turbulent content and the grid is fine 
enough to resolve boundary-layer dominant eddies. It presents a new seamless 
hybrid RANS-LES model, which couples RANS and LES approaches via the 
introduction of the following blended RANS-LES length-scale: 

LESBRANSeBWMLES lflffl )1()1(  .    (4.12) 

In accordance with the general DES concept, in order to create a seamless hybrid 
model, the length-scale WMLESl  defined by (4.12) should be substituted into the 

background RANS model in place of the RANS length scale, RANSl . 

As far as the LES length-scale is concerned, it is defined via the sub-grid 
length-scale   (4.11) just as it is done in (D)DES (4.4). 

Let us now consider two other ingredients of the length-scale (4.12), namely, 
the functions Bf  and ef . 

The empirical blending function Bf  depends upon max/ hdw  and is defined as 



}0.1),9exp(2min{ 2Bf , max/25.0 hdw .   (4.13) 

It varies from 0 to 1 and provides rapid switching of the model from RANS mode 
( Bf =1.0) to LES mode ( Bf =0) within the range of wall-distance 

maxmax5.0 hdh w   (see solid line in Fig.3). 

 

Figure 3  Profiles of the functions Bf  and 1ef  in plane channel 

The second empirical function involved in (4.12), elevating function ef , is aimed 

at preventing the excessive reduction of the RANS Reynolds stresses which has 
been observed in the interaction of the RANS and LES regions in the vicinity of 
their interface. It is instrumental in combating log-layer mismatch. The function 

ef  should be close to zero, and therefore passive, in two cases: 

1. when the grid used in the simulation is sufficient for a wall-resolved LES (the 
RANS-LES interface is located very close to the wall, at y+ < 15-20, so that 
the Reynolds stresses near the interface are negligible); 

2. when the final IDDES model (see eqn. (4.22) below) effectively performs as 
the background RANS model (otherwise, a non-zero ef  would corrupt the 
correct RANS behaviour). 

The function built to satisfy these demands reads 

21 }0),1(max{ eee fff  .     (4.14) 

Here the functions 1ef  is defined as 
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It provides a “predefined” (i.e., dependent on the grid but not on the solution) 
“elevating” device for the RANS component of the WMLES length-scale (4.12). 
As seen in Fig. 3, where 1ef  is plotted by a dashed line, it coincides with Bf  

when 1Bf , i.e., in the transitional RANS-LES region, but then, with wd  

decrease, grows up to 2.0, and then gradually falls to 1.0 on the wall. 
The function 2ef  reads: 

},max{0.12 lte fff  .      (4.16) 

It controls the intensity of “elevating” of the RANS component of the model 
(4.12) through the functions tf  and lf : 

])tanh[( 32
dttt rcf  ,    ])tanh[( 102

dlll rcf  ,    (4.17) 

where the quantities dtr  and dlr  are the “turbulent” and “laminar” analogues of dr  

in DDES (4.5) defined by the relations 

22102/1

,

2 κ}10,])/(max{[/ w
ji

jitdt dxur   ,    (4.18a) 

22102/1

,

2 κ}10,])/(max{[/ w
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jidl dxur   ,   (4.18b) 

and lc  and tc  are additional model constants depending on the background 

RANS turbulence model. These constants should be adjusted so that the function 

2ef  is virtually zero when either dtr  or dlr  is close to 1.0. Similar to the 

parameter dr , dtr  is close to 1.0 in the logarithmic part of the boundary layer, 

while the new parameter dlr , is close to 1.0 in the laminar sublayer. So, with the 

properly chosen constants tc  and lc , one of the functions, tf  or lf  is close to 

1.0, and therefore the functions 2ef  and ef  are close to zero, which ensures 

satisfaction of the demands 1) and 2) formulated above. Based on simulations of 
channel flow, the values of the constants are set to 3.55 and 1.63 for the S-A-based 
IDDES and 5.0 and 1.87 for the M-SST-based IDDES respectively. 

Note that, in contrast to 1ef , 2ef  depends on the solution via the quantity 

 
ji

ji xu
,

2)/(  in the denominator of dtr  and dlr . As for introducing of the 

function   (see 4.4) into the definition of ef  (4.14), it is unrelated to the low-Re 

correction role this function plays in the LES mode of (D)DES, and is purely 
empirical. A better function to enforce the effect of ef  when the background 

RANS model has the low-Re terms could probably be devised. However, as 
shown in Section 9 of Chapter IV, even with this choice, the IDDES performance 
turns out quite satisfactory, so that a search for another function does not seem to 
be crucial. 



DDES branch and its blending with the WMLES branch 
This branch responsible for the DDES-like functionality of IDDES becomes active 
only when the inflow conditions do not have any turbulent content.  

The original DDES formulation (4.7) may be presented in the following more 
general (applicable not only to the S-A but for any RANS background model) 
form: 

)}(,0max{ LESRANSdRANSDDES llfll  .    (4.19) 

Unfortunately, no way was found to blend this length-scale with that of the 
WMLES-branch (4.12), which would ensure an automatic choice of the WMLES 
or DDES mode by the final (combined) model, depending on the type of the 
simulation (with or without turbulent content). However this turned out to be 
possible with a slightly modified version of (4.19), namely, 

LESdRANSdDDES lflfl )
~

1(
~~

 ,     (4.20) 

where the blending function df
~

 is defined by 

}),1max{(
~

Bdtd fff   with ])8tanh[(1 3
dtdt rf  .   (4.21) 

As shown in Travin et al., 2006, this definition of the length-scale is effectively 
equivalent to the original one in DDES (4.19). 

With the use of (4.20), the required IDDES length-scale combining the 
WMLES and DDES scales (4.12) and (4.20) can be implemented as: 

LESdRANSedhyb lflffl )
~

1()1(
~

 .    (4.22) 

Indeed, in the simulations with an inflow turbulent content, 1dtr , dtf  is close 

to 1.0, and df
~

 defined by (4.21) is equal to Bf  so that (4.22) automatically 

reduces to (4.12). Otherwise, ef  becomes zero, and so (4.22) reduces to (4.20). 

Note in conclusion that, provided that the DDES model is already available in 
a code, implementation of the IDDES approach, i.e., embedding the length scale 
(4.22) instead of DDES length-scale (4.7) is very simple. Moreover, the approach 
can be easily coupled with other than S-A and M-SST DES models as 
demonstrated by Mockett et al., 2007 who implemented SAE- and CEASM-based 
IDDES versions. However, in theoretical terms, the difference between DDES and 
IDDES is rather significant. First of all, the IDDES employs a new definition of 
the sub-grid length-scale that includes explicit wall-distance dependence, unlike 
the usual LES and (D)DES practice, which involves only the grid-spacing. Other 
than that, IDDES includes an additional, WMLES, branch and a set of empirical 
functions providing a different functionality of the combined model depending on 
whether a simulation does or does not have inflow turbulent content. In this sense, 
there is an intentional non-uniqueness of the solution within given lateral 
boundary conditions. 
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